Selective Catalytic/Non-Catalytic Reduction Conference

Ammonia Slip and Increased SO₃ from SCR: Balancing Air Heater Deposits, Ammonia in Effluent Discharge, and SO₃ Plume

Presented by:
Thomas Wright
Parsons Energy & Chemicals Group
Chattanooga, Tennessee
May 16, 2002

Agenda

- Introduction
- Formation and fate of ammonia
- Formation and fate of SO₃
- Air heater deposits
- Ammonia in effluent discharge
- SO₃ mitigation
- Balancing ammonia slip and SO₃
- Conclusions
- Recommendations

Introduction

- SCR produces
 - Ammonia (NH₃) slip
 - Increased sulfur trioxide (SO₃)
- Impacts on coal-fired power plants
 - High acid dew point temperature
 - Increased air heater deposits
 - NH₃ in effluent discharge
 - Potential for visible ("blue") SO₃ plume

Formation and Fate of Ammonia

Formation

- Catalyst life up to 20,000 hours
- <1 ppm NH₃ for first half of catalyst life
- ~2 ppm NH₃ at end of catalyst life

■ Fate – removal of NH₃ slip

- Air heater deposits reaction of NH₃ and SO₃ to form ammonia bisulfate (ABS)
- Ad/absorbed on fly ash
- Absorbed in flue gas desulfurization (FGD) slurry

Impact

- Increased air heater deposits ABS and fly ash
- NH₃ in fly ash/FGD effluent discharge

Formation and Fate of Ammonia (Cont'd)

- Few reports on distribution of NH₃ slip
 - Some of air heater deposits recycled back to boiler as NOx -Ljunstroms
 - Best estimate 50 to 80 percent on fly ash

Formation and Fate of SO₃

Formation

- Boiler SO₃ 0.5 percent to 1.5 percent of SO₂
- SCR SO₃ ~1 percent of SO₂ (SCR ~doubles SO₃)
- Fate removal of SO₃ ("inherent removal")
 - Condensate on air heater surfaces
 - Air heater ash and ABS deposits
 - Electrostatic precipitator (ESP) fly ash
 - FGD slurry
- Impact of increased SO₃
 - Higher acid dew point temperature
 - Increased air heater deposits fly ash and ABS
 - Potential for visible plume

Formation and Fate of SO3 (cont'd)

Inherent SO3 Removal

- With increased SO3 from SCR, does percent removal or total ppm removed remain constant?
- Boiler SO3: 20 ppm with 50% "inherent" removal = 10 ppm at stack
- Boiler + SCR SO3 = 20 + 20 = 40 ppm

with 50% "inherent" removal = 20 ppm at stack

with "constant" 10 ppm removed = 30 ppm at stack

Air Heater Deposits

General

- Ammonia bisulfate (ABS) is primary product from reaction of NH₃ and SO₃
- ABS condenses (initial formation temperature) at ~350°F and is "sticky"
- IFT is a function of SO3 and NH3 − higher SO3 and NH3 → higher
 IFT

Thermodynamic and kinetic analysis

- High SO₃: NH₃ ratio → high driving force for reaction and shorter temperature drop for completion of reaction
- Turbulent gas flow results in condensation of ABS on cooler heat transfer surfaces
- Laminar gas flow may produce ABS aerosol formation, which may pass through air heater (Results from rapid gas cooling before ABS diffuses to cooler air heater surfaces and condenses)

Air Heater Deposits (Cont'd)

Radian Equation

- SO₃ ppm x NH₃ ppm x [T (IFT) T (Rep)]
 where "T(Rep)" is a combination of exit gas temperature and cold end metal temperature
- For 3.0 percent sulfur coal and 2 ppm NH₃ Slip ABS deposits should form in air heater
- SNCR appears to have deposits at a lower Radian number, probably due to uneven distribution of NH3 slip
- Localized area of high NH3 slip may form a ring of ABS deposits in air heater, as baskets rotate past the high NH3 slip

Ammonia in Effluent Discharge

General

- NH₃ is ad/absorbed on fly ash and in FGD slurry
- NH₃ is soluble
- NH₃ eventually ends up in effluent discharge

Air heater wash water

- Worst case for 2 ppm NH₃ slip and all NH₃ in air heater, ~6,000 ppm NH₃ in wash water
- Early operation for 0.5 ppm NH₃ slip and 20 percent NH₃ in air heater, ~125 ppm NH₃ wash water

Fly ash sluice pond discharge

- Worst case for 2 ppm NH₃ slip and 100 percent on fly ash, ~1.5 to 2.0 ppm NH₃ in fly ash sluice water
- Early operation for 0.5 ppm NH₃ slip and 70 percent on fly ash,
 <0.5 ppm NH₃

Ammonia in Effluent Discharge (Cont'd)

FGD blowdown

- Worst case for 2 ppm NH₃ slip and 100 percent in FGD slurry,
 ~10 ppm NH₃ in FGD slurry (open loop operation)
- Early operation for 0.5 ppm NH₃ slip and 10 percent in FGD slurry,
 ~1 ppm NH₃

■ Typical application – for 2 ppm NH₃ slip

- Air heater 20 percent and 1200 ppm
- Fly ash 70 percent and ~1 ppm
- FGD 10 percent and ~1 ppm
- Composite 1.2 ppm (average annual basis)

Ammonia in Effluent Discharge (Cont'd)

Summary

- Air heater wash water will have a "slug" of NH₃ to chemical treatment pond
- Fly ash pond effluent discharge with air heater wash water blending (for each ppm of NH3 slip):

5 days 7 ppm NH₃

10 days 3.5 ppm NH_3

30 days 1.5 ppm NH_3

SO₃ Mitigation

SO₃ removal location

- In-furnace >2500°F and ~2000°F
- In-ductwork ~650°F and 300°F

Alkali for reaction

- Limestone either calcitic or dolomitic
- Quick and hydrated lime slurry or dry
- Magnesium hydroxide commercial and byproduct from Thiosorbic lime FGD

In-furnace

- >2500°F dead burning, furnace slagging and high stoich
- ~2000°F using Mg(OH)₂

In-ductwork

- ~650°F no published data
- ~300°F EPRI's High Sulfur Test Center

SO3 Mitigation (cont'd)

■ Each 1.0 alkali stoichiometry is approximately equal to 1% of the coal's ash (for high sulfur coals)

Balancing Ammonia Slip and SO₃

Air heater

 Optimize air heater cleaning cycle for ABS and fly ash deposits and for pressure drop – function of SO₃ at air heater inlet

■ NH₃ in effluent discharge

- Minimize steady-state NH₃ in effluent discharge: Optimum air heater deposits and treatment of air heater wash water – may eliminate need for SO₃ removal
- If no limit on steady-state NH₃ in effluent discharge: No air heater ABS deposits, where SO₃ removal should be required

Conclusions

- SO3 removal system after SCR & before the air heater will:
 - Eliminate the potential for a visible SO3 plume and eliminate corrosion from higher acid dew point
 - Allow for balancing the NH3 deposition between the air heater and the ESP to minimize impact on plant operation

Recommendations

■ SO₃ measurements

- Before and during SCR operation determine where SO₃ is formed and removed
- During SCR operation determine whether percent removal or ppm removed is constant with increased SO₃

NH₃ measurements

- Wash air heater after first ozone season and collect wash water samples to estimate NH₃ in air heater. Monitor NH3 slip (at SCR outlet) and NH3 in fly ash → determines NH3 slip distribution
- After first ozone season, increase NOx removal to increase NH₃ slip to point where deposits are formed in air heater to determine plant specific Radian number

